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Abstract

The development of accurate forecasting methods for renewable energy sources
can be an important tool for the integration of such systems in the electricity
grid. In this paper we focus on a forecast technique for the production of a
photovoltaic plant, one day in advance, with the ultimate target of the optimal10

management of an energy storage system.
The procedure is based on a regression model that takes as input the weather

forecasts of the US Global Forecasting Service (GFS) and it is trained and tested
on one year of power production data of a 1.3MW plant located in Borkum,
Germany. The method used is the Multilinear Adaptive Regression Splines, that15

allowed the automatic definition of a reasinably simple model for the system and
whose regression coefficients can be easily interpreted.

The forecasted power obtained by the model proved to have a high corre-
lation with the measured data and relatively low errors even with a limited
number of features included in the model and a low number of training samples.

Keywords: photovoltaic systems; power production forecast; multilinear
adaptive regression splines; numerical weather prediction

1. Introduction20

Inclusion into power distribution grids of renewable energy, from photo-
voltaic (PV), Concentrated Solar Power (CSP) and Concentrating Photovoltaic
(CPV) plants in particular and their increasing diffusion, raises a number of
technological challenges that must be solved to achieve an economic profit from
the integration. The variable nature of the solar resource and the difficulties25

introduced between balance, reliability and flexibility of the network imposes a
backup for an integrated system. This can be achieved by means of auxiliary
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generators and/or storage systems that can intervene during periods of high
variability.

Regardless of the current regulations of the electricity market in different30

regions, which favor, in general, the definition of the production profile one day
in advance [1], [2], [3], an accurate forecast is critical to the proper dimensioning
and optimal management of any storage facility for the distribution grid [4], [5]
and can substantially contribute to make the integration profitable.

Several approaches have been developed in recent years, to forecast the power35

production obtained from renewable resources; for a recent and fairly compre-
hensive review see e.g. [6] and [7] and references therein. Depending on the
time horizon for which the solar power forecast is needed, different approaches
are, in general, required. Short-term forecast, in which the horizon is lower than
one hour (TF < 1h), is based mainly on sky imaging techniques or time series40

analysis, while the use of satellite data can contribute to the accuracy of the
prediction when the forecast horizon increases (1h < TF < 6h) [8] [9]. Due to
the intrinsic non-linearity of the atmospheric circulation, to which variability
of solar energy production is strongly tied, accurate energy forecast for longer
time horizons (TF > 6h) must necessarily rely upon the use of the state of the45

art of Numerical Weather Prediction (NWP).
In this paper we focus on a 24h forecast technique for the production of a

photovoltaic plant, with the ultimate target of the optimal management of an
energy storage system. The developed forecast system, and the results discussed
here, will be based solely on information that may be obtained from the weather50

conditions of the numerical prediction model, and from the past data on weather
conditions and power production of the PV system. Therefore any information
about factors affecting efficiency of the power plant, such as for example cells
temperature, shading due to dust deposition, inverter efficiency, status of wiring
have been neglected. The procedure is based on a regression techniques known55

as Multivariate Adaptive Regression Splines. The regression model uses the
NWP data, without the need of measurements of the power production of the
plant in the recent history. The power production history data are solely used
for the training phase of the model. Finally we used a clear sky model to mimic
time variability of power production at time scales smaller (15 minutes) than60

that of weather forecast (3 hours) .
The method is applied to the power produced by a medium sized PV plant,

located in the German island of Borkum.
The proposed method bases the power forecast mainly on the Global Hori-

zontal Irradiation (GHI) forecast which, being strongly related to the instanta-65

neous power obtained by a photovoltaic system, is of particular relevance among
the available products of a NWP model. A huge bulk of literature on the pre-
diction of the GHI a day in advance exists, though it is not exclusively related
to the specific issue of energy production. In contrast, the literature regard-
ing the use of GHI and other output variables obtained from a meteorological70

model to the forecast of energy production from photovoltaic systems is scant,
presumably due to the poor accuracy of PV plants production data [10].

Recent works about the forecast of the power output of PV systems using
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NWP output include [11] in which 21 PV stations in Denmark were analysed
using the High Resolution Limited Area Model of the Danish Meteorological75

Institute. A single PV plant in Spain was studied using again a high resolu-
tion model in [12]. In [13], forecasts from the Canadian Meteorological Centre,
validated against ground measurements from the United States’s SURFRAD
network, were used to evaluate the performance of three small PV systems;
weather forecast data were processed through spatial averaging and bias re-80

moval using Kalman filtering. Input coming from the Japan Meteorological
Agency weather forecast model are used in [14] and [15] to predict data of PV
plants production in Japan using Support Vector Machine regression techniques
(SVR). The same method has been applied to a single photovoltaic power plant
in [16]. A method based on global and meso-scale weather prediction models85

and artificial neural network was adopted and compared with other methods in
[17] for a PV plant located in Spain. The power output of five tracking plants in
Spain have been recently modelled using as input the forecast of several NWP
models and a non-parametric approach (the Quantile Regression Forests as ma-
chine learning tool) [18]. Recently forecast of the Ensemble Prediction System90

(EPS) of ECMWF and artificial neural networks were used in [19] to produce
a probabilistic forecast of the power production of three solar farms located in
Italy.

The paper is structured as follows. In section 2 the NWP model data sets
are described, then in section 3 a brief description of the forecasting method95

for the power production of the plant is presented. In section 4 the regression
technique is briefly described. Sections 5 and 6 contain the description of the
naive persistence model used as a benchmark and the performance measures
adopted. The results of the application of the methodology and evaluation of
its performance are discussed in section 7. Finally in section 8 we summarise100

main findings of this study and outline possible future improvements that may
be implemented.

2. Numerical Weather Prediction

The main purpose of this work was to verify the maximum degree of skill
achievable in the prediction of PV energy production using as predictors the105

meteorological fields produced by a numerical weather forecast model and to
quantify the benefit that can be obtained in comparison with the simplest pre-
dictive methods based on persistence and on the knowledge of the climate.

Therefore, our first objective was to separate the uncertainty introduced by
the predictors being used from that related to the length of the forecast time.110

To achieve this result we used two different data sets for the calibration and
verification of the procedure. In the first one (named from now on GFS1) we
used forecast data with the shortest possible forecast time, instead for the second
(GFS2) we used data with forecast time greater than 24h.

Moreover the “ideal” weather forecast data set used in our analysis, basically115

needs to:
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• be available for 2014, the year for which the data on production of the
photovoltaic plant under study are available;

• be updated multiple times per day, so as to support a real-time operating
procedure120

• possibly be publicly available.

These features are fully satisfied by the global model forecasts GFS (Global
Forecasting System) operated by the US National Meteorological Service1. As
for many of the activities funded by the US, the GFS model data are made pub-
licly available and form the basis for many commercial and research activities,125

including private ones. The GFS model is a spectral model operated 4 times a
day, starting from the time of analysis 00, 06, 12 and 18 UMT, and provides
global forecasts, with an average of about 13km horizontal resolution and 64
vertical levels. Constantly updated forecasts are available at the maximum spa-
tial resolution, for forecasting time up to +120hr, every 3 hours (actually, since130

May 2016 forecast times up to +120hr are available hourly).
Past data of the operational model for the year 2014, although at reduced

spatial resolution, have been downloaded from dedicated servers operated by
NOAA (National Oceanic and Atmospheric Administration).

More precisely, the dataset GFS1, which we used to train the regression135

model, is obtained collecting the data for year 2014 at 0.5◦ resolution for +03hr
and +06hr forecast time. This allowed reconstructing the variability of meteo-
rological fields during the day with a temporal resolution of 3 hours. In detail,
we used the forecast + 03hr and +06hr of the analysis of

• 00 UTM, for 03 and 06 UTM,140

• 06 UTM, for 09 and 12 UTM,

• 12 UTM, for 15 and 18 UTM,

• 18 UTM, for 21 and 00 UTM.

To estimate the skill of the procedure when using predictors at longer forecast
time, we build up the GFS2 data set, covering the second part of the year 2014,145

using fields for times of forecast +27hr and +30hr. The GFS2 data set has been
organised similarly to GFS1, in which however the +27hr (+30hr) forecast has
been used for each day in place of the +3hr (+6hr) and the analysis time is that
of the day before (24hr ahead).

3. The forecasting model150

The power that can be obtained from a photovoltaic plant is almost entirely
related to the solar radiation incident on the panels from the ground or the sky,
both as direct and diffuse solar radiation.

1http://www.emc.ncep.noaa.gov/index.php?branch=GFS
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The incident solar radiation on top of the earth’s atmosphere fluctuates
around an average value estimated at I0 = 1360Wm−2 [20]. This is attenuated155

in its way to the earth’s surface due to complex multiple reflections, absorptions,
reemissions from various layers and it is modulated by the various components
of the atmosphere as for example areosols and water vapour. The incident
radiation on the earth’s surface is divided in two distinct components: the
Direct Normal Irradiance (DNI) and Diffuse Horizontal Irradiance (DHI) whose160

geometric sum is equal to the Global Horizontal Irradiance (GHI) at the ground:

GHI = DHI +DNI · cos θZ (1)

where θZ is the solar zenith angle [6].
Global Horizontal Irradiance (GHI) is the amount of terrestrial irradiance

falling on a horizontal surface and is available as an output from NWP models
such as the GFS. In general, instead, the direct and diffuse components are not a165

direct model output. Several parameterisations are available for the estimation
of DNI, such as the DISC and DIRINT models developed by E. Maxwell[21] and
R. Perez et al.[22] respectively. In this case, DHI can then be simply obtained
from equation 1.

The radiation reaching a non horizontal surface depends on its orientation,170

the direct and diffuse components, the radiation reflected and scattered by the
earth’s surface, and finally the effect of any shading or obstacle.

The radiation that reaches the Plane Of Array (POA) is:

Epoa = Eb + Eg + Ed (2)

where Eb is the beam component, Eg is the ground-reflected, and Ed is the
sky-diffuse component. The beam component of the solar irradiance is the175

projection of the Direct Normal Irradiance (DNI) on the surface:

Eb = DNI · cosAOI (3)

where AOI is the Angle of Incidence between the Sun’s rays and the surface.
Eg depends on the reflectivity of the ground surface known as albedo and the
tilt angle θT :

Eg = GHI · albedo · 1− cos θT
2

(4)

Several models have been published using different approaches to describe the180

irradiance from the sky dome on a tilted surface [23]. One of the simplest is the
Isotropic Sky Diffuse model, relating Ed to the Diffuse Horizonthal irradiance
(DHI):

Ed = DHI · 1 + cos θT
2

(5)

Apart from GHI another output of the weather forecast showed a good
correlation with the plant’s power measure, namely the total cloud cover (tcc),185

indicating the cloudiness in a range of (0,1).
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We generate two time series with time interval ∆tm, and we denote by
ghi(tm) the average total radiation to the ground and with tcc(tm) the total
cloud cover. ∆tm is the weather forecast time interval (in our case 3h) that is
generally different from that of the measured power production (15m).190

We calculate the plane of array irradiation (Epoa(tm)) from the orientation
of the panel, the position of the sun, the albedo, using the isotropic model for
the diffuse radiation and the values ghi(tm), dni(tm) and dhi(tm) calculated
from the meteorological model data. We also calculate the mean value of the
measured power time series on the same time intervals of the GFS model, and195

denote it by p(tm).
The independent variables for the regression model are Epoa and, tcc, and

the target variable is the measured power produced by the plant p. Given these
data for a significant training time interval, we train a regression model based
on Multivariate Adaptive Regression Splines, to estimate the time series of the200

average power produced with the same time frequency of weather model p̂(tm).

p̂(tm) = f(Epoa(tm), tcc(tm)) (6)

The model developed allows us to make a forecast of the PV plant’s pro-
duction averaged over the time interval between forecasts. Our main objective,
however, is to obtain a prediction model that produces results that may be di-
rectly compared with the measurement of the power, it is therefore necessary to205

introduce an interpolation technique to calculate a higher frequency time series.
To achieve this we use a variant of the clear sky index kt, defined as the ratio

between the measured global radiation and the corresponding clear sky value :

kt =
GHIt
GHIcs

(7)

We introduce a clear sky performance index kpv, defined as the ratio of the
real produced power and the power that the plant would have produced in clear210

sky conditions:

kpv =
p

pcs
(8)

A model for the Clear sky insolation conditions is required by almost all
forecasting models [6]. The Clear Sky radiation models are developed using one
or more Radiative Transfer Models (RTM) and require the knowledge of local
weather variables, such as the ozone and the water vapor content in the atmo-215

sphere, the Linke turbidity [24] and the relative location of the sun. However,
a recent comparison of such parametric models [25] showed that if accurate
weather information are not available, even simple models, based on standard
atmosphere composition, like the mESRA [26] or the Ineichen [24] models may
provide satisfactory results.220

We calculate the theoretical power produced by the plant for clear sky condi-
tions with the same time frequency of measured data (pcs(tp)) and we take the
mean value of this time series for the same time intervals of the weather forecast
(pcs(tm)). We use the Ineichen model for the calculation of the solar radiation

6



components to the ground. The plane of array irradiance (Epoa−cs) is then cal-225

culated, given the orientation of the plant, using a simple isotropic model for
the diffuse component and assuming an albedo = 0.25 for the calculation of the
ground reflected radiation. The clear sky power is estimated as:

pcs = ppeak
Epoa−cs

E0
(9)

where ppeak is the peak power of the plant and E0 = 1000Wm−2 is a reference
irradiation.230

Using the measured average power, we get the averaged clear performance
index:

kpv(tm) =
p̂(tm)

pcs(tm)
(10)

This is then filtered from outliers, that can be generated near sunrise and
sunset time when pcs(tm) is close to zero, and interpolated at the same instants
of the measured power time serie, to get a new set of values kpv(tp).235

Finally, given the clear sky theoretical power pcs(tp) we can estimate the
power produced by the plant, as:

p̂(tp) = kpv(tp) pcs(tp) (11)

The value of the energy produced in a day is a quantity of interest and is
calculated as the integral of the estimated power:

ê1d =

∫ t0+1d

t=t0

p̂(t) dt (12)

4. The multivariate adaptive regression splines240

The method adopted to obtain the regression model is the so called Multi-
variate Adaptive Regression Splines (MARS), introduced by Friedman in 1991
[27]. A large number of methods have been used in literature, for the forecast
of renewable power production from weather variables, such as linear and non-
linear regression, regression trees, neural networks, support vector machines245

among others [28], but to the best of our knowledge this is one of the first
applications of MARS in renewable energy forecasting.

The technique has become popular in particular for the “data mining”, as
it does not make any assumption or sets any particular class of relationship be-
tween the input variables and the dependent variable. This allows to synthesise250

an accurate model even in cases in which the relationship between the variables
is not monotonous or can be hardly approximated by parametric models. MARS
builds a functional relationship as a set of coefficients and basis functions, solely
from the available data, using a “divide and conquer” strategy: the input space
is divided into regions and for each of these a regression equation is evaluated.255
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The equation generated by the model assumes the generic form:

f̂(X) = β0 +

M∑
m=1

βmhm(X) (13)

It is therefore dependent on the vector of variables X used as predictors and on
their cross products, and consists of an intercept term β0 and the weighted sum
by the coefficients βm of one or more basis functions.

Each basis function hm(X) can be a hinge function, or the product of two or260

more hinge functions. A hinge function has the form max(0, x−t) or max(0, t−
x), where t is a constant called knot. The algorithm searchs on the whole
space of possible inputs and the corresponding output values to detect and
automatically select the variables to be included in the model, the number of
the basis functions and the values of the knots. During the search, a growing265

number of basis function are added to the model, minimising the root mean
square error between the measured and predicted output of the model. The
most important independent variables and the most significant relationships
between them are determined automatically. The result is not necessarily a
piecewise linear function as might appear at first glance, as the basis functions270

of the model can also be formed by the product of hinge functions, giving rise
to non-linear models.

Once this phase is completed, the model is refined by eliminating the basis
functions that are associated with minimal increases of accuracy of the fit. This
is the “Generalised Cross Validation error”, which takes into account not only275

the residual error but also the complexity of the resulting model, reducing, at
the same time, the risk of overfitting. Its expression is:

GCV =

∑N
i=1 (yi − f(xi))

2(
1− C

N

)2 (14)

where N is the number of samples of the data set and xi and yi are the input
and output variable. C = 1 + cd, with d equal to the number of independent
basis functions and c is a penalty parameter between two and three.280

5. Persistence model

To evaluate the performance of the forecasting procedure adopted we use as
benchmark the persistence model. This approach exploits the autocorrelation
property of a time series and, as the name suggests, it is based on the assumption
that the same conditions persist over time or occur with a known time interval.285

p(tm) = p(tm −∆t) and p(tp) = p(tp −∆t) (15)

In our case, in order to get a prediction of energy production on the following
day we will assess the performance of the model with ∆t = 1day.

As for the power, the total energy produced during the day will be calculated
as:

e1d(t) = e1d(t−∆t) (16)

8



6. Performance measure290

The performances of a solar plant forecasting procedure are evaluated using
several indicators in the current literature, often making it difficult to compare
the results.

Some parameters are used quite extensively, such as the coefficient of deter-
mination R2, the Root Mean Square Error (RMSE) , the Mean Average Error295

(MAE) and the Mean Bias Error (MBE).

R2 = 1−
∑n

i=1(xi − x̂i)2∑n
i=1(xi − x̄)2

(17)

RMSE =

√√√√ n∑
i=1

(xi − x̂i)2
n

(18)

MAE =

n∑
i=1

|xi − x̂i|
n

(19)

MBE =

n∑
i=1

xi − x̂i
n

(20)

where xi are the measured data, x̂i are the forecasts and x̄ is the mean value300

of the measured data.
The algorithm’s performance will be evaluated as the ability to forecast the

instantaneous power compared with the measured values with a 15m cadence.
The performance will also be assessed on a time series with an average time
step of 3h, at the time instants where the time series of the GFS meteorological305

forecast data are given. When calculating the performance of the algorithm
only the daytime values are considered.

These accuracy measures are completed with the error in the estimation of
the daily energy production.

7. Results310

The forecast procedure is tested on a medium sized PV plant located in
the German island of Borkum, south oriented, with a tilt angle of 38◦ and an
approximate peak power of 1.3MW . The data of the power produced by the
plant is available for the year 2014 as a complete time series with a time interval
of 15m.315

Since only one year of measures was available we used the first half of the
year for the training of the model and the second half for the testing. For the
training we used the GFS1 dataset, whose data is relative to a short forecast
time, the resulting model is tested in the second half of the year on both the
GFS1 and GFS2, the latter is obtained for the second half of the year with a320

forecast time of one day.
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Table 1: MARS model fitted GFS1 data for the first half of the year, the model is calculated
as a weighted sum of the basis function on the left column, with weight coefficients listed in
the right columns. h(x − k) is the hinge function for the variable x and knot k. The last
column is the explained variance of the first term and the two last terms of the function.

Basis Function Coefficient Expl. var.
(Intercept) 1.365 -
Epoa 0.753 94%
h(tcc− 0.56) · Epoa 0.45

6%
h(0.56− tcc) · Epoa 0.44

The MARS method allows to select the complexity of the model obtainable.
We discuss here a simple model in which we limited the input parameters to
only two values, namely the solar radiation on the plane of array (Epoa) and the
total cloud cover (tcc) and we fixed the maximum degree of the interpolating325

function to six. The results of the automatic model generation are presented in
Table 1, showing a strong linear correlation between the power produced and the
radiation on the plane of array, modulated by the forecasted total cloud cover.
The model obtained has a very low value for the intercept, and only a linear term
in Epoa and a second degree basis function are kept by the fitting procedure,330

with a hinge function having a knot at 56% of the cloud cover. Although 95%
of the variance is described by the Epoa linear term alone, the addition of the
tcc term, appearing by means of the second degree basis function, improves
the described variance of the 5%. More complex formulations are obtainable
including more input variables in the model or increasing the maximum allowed335

degree, but the resulting performances were similar (or worse, in some case) to
the simple model shown here, with a less stable and interpretable function. This
is particularly true for our operational configuration where calibration data are
limited in time and not homogeneous (+3h, +6h) with those of the forecasting
stage (+27h, +30h).340

The accuracies of the MARS based procedure for the GFS1 and GFS2
datasets, as well as that of the persistence model, are listed in Table 2 for
the 3h and 15m power time series and for the daily energy production.

The results for the 3h forecast are substantially more accurate that those of
the persistence presenting a much higher correlation value (0.834 against 0.488)345

and RMSE and MAE almost halved. The low value of R2 for the persistence
model is an indicator of the variability of the local weather conditions, that are
only weakly similar from day to day. The high correlation value for the MARS
model is due to the high correlation of the weather variables selected with the
power output of the plant. In this case we are also taking advantage of the350

smoothing in the measured power data due to the averaging in the 3h time
interval. The results of the 15m interpolation are obviously less precise, the R2

of the persistence model is almost halved compared to the 3h results. A decrease
could be noticed also for the MARS regression, since we are lacking detail in
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Table 2: Performance comparison for the forecast methods for power with 3h and 15m time
cadence and for daily energy production. Power values are in kW , energy is measured in
kWh, except for the R2 coefficient.

Variable Mean Peak Method R2 RMSE MAE MBE

p3h 263.8 1064.4
Persistence 0.488 235.1 146.3 2.4
MARS GFS1 0.834 119.2 78.6 3.0
MARS GFS2 0.805 128.7 86.5 3.5

p15m 332.3 1326.0
Persistence 0.262 286.2 189.2 -0.5
MARS GFS1 0.735 168.8 117.8 4.4
MARS GFS2 0.706 177.7 125.9 5.0

e1d 4060.8 10047.8
Persistence 0.452 2076.1 1523.6 1.8
MARS GFS1 0.868 1012.7 769.9 50.3
MARS GFS2 0.843 1106.1 862.5 57.8

weather information and only a smoothed variation of the power production355

profile can be obtained. This is even more evident in the other forecast error
measures, where the limits of the interpolation procedure and the lack of higher
frequency weather forecasts appear.

As expected the performance of the GFS2 dataset is worse than that obtained
for the GFS1 data due to the longer forecast horizon, but the decrease of the360

performance measures is relatively small. This testifies the accuracy of the
forecast provided by the GFS, since increase in the forecast horizon has a limited
effect on the accuracy of the power and energy from the plant. The MAE is in
fact equal to 8.9% of the peak power and to 35.4% of the mean power for the
GFS1 dataset and equals 9.5% of the peak power and 37.9% of the mean power365

for the GFS2 data. Looking at the energy production the MAE is 7.7% of the
peak and 18.9% of the mean power for GFS1 and 8.6% and 21.2% of the peak
and mean power for the GFS2.

The higher accuracy of the GFS1 dataset is also noticeable in the two figures
1 and 2 in which the real data (measure), the forecast with the shortest forecast370

times (GFS1) and the forecast with longest forecast time (GFS2) are shown, for
a relatively sunny week and a more cloudy week at the end of 2014.

Long periods of clear sky conditions with associated maximum photovoltaic
production are not common, in Borkum. This is particularly evident from the
image on the left in figure 3, showing the power production during all the year,375

and where it is evident that the production is characterised by strong oscillation
at a relatively high frequency.

The low frequency at which the weather forecast data are available cannot
reproduce such variability, and the image obtained from the model (shown on
the right) appears as a smoothed version of the real one, while still being able380

to reproduce its main patterns.
We expect to have better performance in the near future using the same
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Figure 1: Measured and forecast power for a sunny week

method since the GFS system has recently revised its forecast output increasing
its temporal resolution from 3h to 1h that will permit the detection of higher
frequencies of the power output signal.385

8. Summary and conclusions

In this paper a new procedure to forecast the power production of a pho-
tovoltaic power plant, 24h in advance, is described. The regression model de-
veloped uses past historical plant power output data and the publicly available
output data of the weather forecasts of the GFS numerical weather prediction390

model.
The model is based on Multilinear Adaptive Regression Splines, a method

that, to our knowledge, has not yet been applied to renewable energy prediction
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Figure 2: Measured and forecast power during a cloudy week

and that allows to obtain a non linear but still interpretable regression function
from a set of well chosen input variables.395

The output data from the GFS model with the highest correlation with
the PV power production have been individuated and, on these, the regression
model have been fitted, giving the mean power output on the 3h time intervals
that are characteristic of the weather forecast. Using an interpolation procedure
based on a clear sky model we obtained the power forecast with the temporal400

resolution of 15min, identical to that of the measures.
The procedure has been applied to a medium sized (1.3MWp) PV plant

located in the island of Borkum (Germany) in the framework of the European
H2020 project NETfficient, with one year of production data available.

Considering the relative low number of samples and features taken into ac-405
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Figure 3: Measured and modeled power during the year
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count, the results are promising. The forecast errors with one day horizon, are
RMSE = 177.7kW and MAE = 125.9kW equivalent to 13.4% and 9.5% of the
plant’s peak power and to 53.4% and 37.9% of the mean annual power.

The errors of daily energy production of the plant, are RMSE = 1106.1kWh
and MAE = 862.5kWh equivalent to 11.0% and 8.6% of the plant’s maximum410

daily energy production, and to 27.2% and 21.2% of the mean.
The method is subject to further improvements, for example due to the

recently improved frequency of the GFS forecasts, or by including a higher
number of input variables and allowing a more complex regression function; an
extended set of measured data can improve the accuracy of the regression due to415

a more detailed statistics and, finally, the availability of real time measurements
of power production could allow the implementation of a continuous update of
the calibration, resulting, hopefully, in a global improvement of forecast quality.
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